skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Strom, T. Amanda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, the photoluminescent properties of a lead-free double perovskite Cs 2 NaInCl 6 doped with Sb 3+ are explored. The host crystal structure is a cubic double perovskite with Fm 3̄ m symmetry, a = 10.53344(4) Å, and rock salt ordering of Na + and In 3+ . It is a wide bandgap compound ( E g ≈ 5.1 eV), and substitution with Sb 3+ leads to strong absorption in the UV due to localized 5s 2 → 5s 1 5p 1 transitions on Sb 3+ centers. Radiative relaxation back to the 5s 2 ground state, via a 3 P 1 → 1 S 0 transition, leads to intense blue luminescence, centered at 445 nm, with a photoluminescent quantum yield of 79%. The Stokes shift of 0.94 eV is roughly 33% smaller than it is in the related vacancy ordered double perovskite Cs 2 SnCl 6 . The reduction in Stokes shift is likely due to a change in coordination number of Sb 3+ from 6-coordinate in Cs 2 NaInCl 6 to 5-coordinate in Cs 2 SnCl 6 . In addition to the high quantum yield, Cs 2 NaInCl 6 :Sb 3+ exhibits excellent air/moisture stability and can be prepared from solution; these characteristics make it a promising blue phosphor for applications involving near-UV excitation. 
    more » « less
  2. Abstract There has been a great deal of recent interest in extended compounds containing Ru3+and Ru4+in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6(X=Cl or Br), MA2MRuX6(M=Na, K or Ag;X=Cl or Br) and MA3Ru2X9(X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6with Ru4+crystallize in the trigonal space groupand can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6with M+and Ru3+crystallize in a structure related to BaNiO3with alternatingMX6and RuX6face‐shared octahedra forming linear chains in the trigonalspace group. The compound MA3Ru2Br9crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models. 
    more » « less